Fixed-Point-Free Abelian Endomorphisms, Braces, and the Yang-Baxter Equation

Laura Stordy
May 25, 2020
Agnes Scott College

Table of contents

1. Fixed-Point-Free Abelian Endomorphisms
2. Braces
3. The Yang-Baxter Equation
4. Constructions

Symmetric Group
Alternating Group
Metacyclic Group
Dihedral Group

Fixed-Point-Free Abelian

Endomorphisms

$\operatorname{FPF}(G)$

Definition

A fixed-point-free abelian endomorphism is a homomorphism $\psi: G \rightarrow G$ such that

- $\psi(g)=g$ if and only if $g=1_{G}$ and
- $\psi(g h)=\psi(h g)$ for all $g, h \in G$.

We denote the collection of fixed-point-free abelian endomorphisms on a group G as $\operatorname{FPF}(G)$.

Example

Let $C_{3}=\left\langle g: g^{3}=1_{G}\right\rangle$. Then $\psi_{0}(g)=1_{G}, \psi_{1}(g)=g^{2}$ are fixed-point-free abelian endomorphisms.

$\operatorname{FPF}(G)$

Remark

If G is a nonabelian simple group, then $\operatorname{FPF}(G)$ consists only of the trivial ψ.

Since $\operatorname{ker} \psi \triangleleft G, \operatorname{ker} \psi=\left\{1_{G}\right\}$ or $\operatorname{ker} \psi=G$. The former causes a contradiction where $\psi(g h) \neq \psi(h g)$ for some pair g, h, thus $\operatorname{ker} \psi=G$.

Remark

ψ is constant on conjugacy classes, since

$$
\psi(g)=\psi\left(g h h^{-1}\right)=\psi\left(g h g^{-1}\right) .
$$

Remark

Let $\psi \in \operatorname{FPF}(G), \phi \in \operatorname{Aut}(G)$. Since $\phi \psi \phi^{-1} \in \operatorname{FPF}(G), \operatorname{FPF}(G)$ is stable under conjugation by $\operatorname{Aut}(G)$.

Regular, G-stable Subgroups

For $g \in G$, let $\eta_{g}=\lambda(g) \rho(\psi(g))$. Denote the collection of all such η_{g} 's as N^{ψ}. We then have that N^{ψ} is a regular, G-stable subgroup of Perm (G).

Proposition (Childs)

If $\psi_{1}, \psi_{2} \in \operatorname{FPF}(G)$ differ by an element of $Z(G)$, then $N^{\psi_{1}} \cong N^{\psi_{2}}$.

Example

Let $\psi_{0} \in \operatorname{FPF}(G)$ denote the trivial fixed-point-free abelian endomorphism, i.e. $\psi_{0}(g)=1_{G}$. Then $N^{\psi_{0}}=\lambda(G)$.

Braces

Braces

Definition

A left skew brace is a set B, along with two binary operations • and \circ, such that

- (B, \cdot) and (B, \circ) are groups, and
- For all $a, b, c \in B, a \cdot(b \circ c)=(a \circ b) \cdot a^{-1} \cdot(a \circ c)$, where a^{-1} denotes the inverse of a in (B, \cdot).

Denote the inverse of a in (B, \circ) as \bar{a}.

Example

Let (B, \cdot) be a group, and define $a \circ b=a \cdot b$. Then (B, \cdot, o) is a brace.

Example

Let $B=\{0,1,2,3,4,5\}$, and define $a \cdot b=a+b \bmod 6$ and $a \circ b=a+(-1)^{a} b \bmod 6$. Then (B, \cdot, \circ) is a brace with $(B, \cdot) \cong C_{6}$ and $(B, \circ) \cong S_{3}$.

Regular Subgroups to Braces

Let N be a regular, G-stable subgroup of $\operatorname{Perm}(G)$ and let $a: N \rightarrow G$ be given by $a(\eta)=\eta\left[1_{G}\right]$.
Define $\eta \circ \pi=a^{-1}\left(a(\eta) \star_{G} a(\pi)\right)$.
Proposition (Smoktunowicz-Vendramin)
(N, \cdot, \circ) is a brace.
Denote this as $\mathfrak{B}(N)$.

$$
\eta \circ \pi=a^{-1}(a(\eta) \cdot a(\pi))
$$

Plugging N^{ψ} into this formula yields

$$
\eta_{g} \circ \eta_{h}=\eta_{g \psi\left(g^{-1}\right) h \psi(g)}
$$

Verify that this satisfies the brace condition. Note that $\eta_{g}{ }^{-1}=\eta_{g-1}$.

$$
\begin{aligned}
\eta_{g} \circ\left(\eta_{h} \eta_{k}\right) & =\eta_{g} \circ \eta_{h k} \\
& =\eta_{g \psi\left(g^{-1}\right) h k \psi(g)} \\
& =\eta_{g \psi\left(g^{-1}\right) h \psi(g) g^{-1} g \psi\left(g^{-1}\right) k \psi(g)} \\
& =\eta_{g \psi\left(g^{-1}\right) h \psi(g)} \eta_{g} \eta_{g \psi\left(g^{-1}\right) k \psi(g)} \\
& =\left(\eta_{g} \circ \eta_{h}\right) \eta_{g}{ }^{-1}\left(\eta_{g} \circ \eta_{k}\right)
\end{aligned}
$$

Brace Classes

Definition

If $\mathfrak{B}(N) \cong \mathfrak{B}(M)$, we say N and M are in the same brace class and call them brace equivalent.

Proposition (Koch-Truman)
$\mathfrak{B}\left(N^{\psi_{1}}\right) \cong \mathfrak{B}\left(N^{\psi_{2}}\right)$ if and only if $\psi_{1}=\phi \psi_{2} \phi^{-1}$.

The Yang-Baxter Equation

The Yang-Baxter Equation

Braces were constructed specifically with the objective of describing the set-theoretic solutions to the Yang-Baxter equation, functions $R: B \times B \rightarrow B \times B$, such that

$$
R_{12} R_{23} R_{12}=R_{23} R_{12} R_{23}
$$

where $R_{12}(a, b, c)=(R(a, b), c)$ and $R_{23}(a, b, c)=(a, R(b, c))$.
Given $\mathfrak{B}=(B, \cdot, \circ)$ we construct a solution $R: B \times B \rightarrow B \times B$.
Proposition (Guarnieri-Vendramin)
The following is a solution to the YBE:

$$
R(a, b)=\left(a^{-1}(a \circ b), \overline{a^{-1}(a \circ b)} \circ a \circ b\right) .
$$

$$
R(a, b)=\left(a^{-1}(a \circ b), \overline{a^{-1}(a \circ b)} \circ a \circ b\right)
$$

Example

The trivial brace gives us the solution $R(a, b)=\left(b, b^{-1} a b\right)$.
Verify this:

$$
\begin{aligned}
R_{12} R_{23} R_{12}(a, b, c) & =R_{12} R_{23}\left(b, b^{-1} a b, c\right) \\
& =R_{12}\left(b, c, c^{-1} b^{-1} a b c\right) \\
& =\left(c, c^{-1} b c, c^{-1} b^{-1} a b c\right)
\end{aligned}
$$

$$
\begin{aligned}
R_{23} R_{12} R_{23}(a, b, c) & =R_{23} R_{12}\left(a, c, c^{-1} b c\right) \\
& =R_{23}\left(c, c a c^{-1}, c^{-1} b c\right) \\
& =\left(c, c^{-1} b c, c^{-1} b^{-1} a b c\right)
\end{aligned}
$$

$R: N^{\psi} \times N^{\psi} \rightarrow N^{\psi} \times N^{\psi}$

We know the complete brace structure for $\mathfrak{B}\left(N^{\psi}\right)$, so we can construct the Yang-Baxter solution $R: N^{\psi} \times N^{\psi} \rightarrow N^{\psi} \times N^{\psi}$.

$$
\begin{aligned}
R\left(\eta_{g}, \eta_{h}\right) & =\left(\eta_{g}^{-1}\left(\eta_{g} \circ \eta_{h}\right), \overline{\eta_{g}^{-1}\left(\eta_{g} \circ \eta_{h}\right)} \circ \eta_{g} \circ \eta_{h}\right) \\
& =\left(\eta_{\psi\left(g^{-1}\right) h \psi(g)}, \overline{\left.\eta_{\psi\left(g^{-1}\right) h \psi(g)} \circ \eta_{g \psi\left(g^{-1}\right) h \psi(g)}\right)}\right. \\
& =\left(\eta_{\psi\left(g^{-1}\right) h \psi(g)}, \eta_{\psi\left(h g^{-1}\right) h^{-1} \psi\left(g h^{-1}\right)} \circ \eta_{g \psi\left(g^{-1}\right) h \psi(g)}\right) \\
& =\left(\eta_{\psi\left(g^{-1}\right) h \psi(g)}, \eta_{\psi\left(h g^{-1}\right) h^{-1} \psi(g) g \psi\left(g^{-1}\right) h \psi\left(g h^{-1}\right)}\right)
\end{aligned}
$$

Constructions

Symmetric Group

Consider $S_{n}, n \neq 4,6$.
The only normal subgroups in S_{n} are $\{\iota\}, A_{n}$, and S_{n}. We know ker $\psi \neq\{\iota\}$, so for ψ to be a nontrivial fixed-point-free abelian endomorphism, $\operatorname{ker} \psi=A_{n}$.

Fix $\tau \in A_{n},|\tau|=2$.
Then $\psi_{\tau} \in \operatorname{FPF}\left(S_{n}\right), \psi_{\tau}$ defined by

$$
\psi_{\tau}(\pi)=\left\{\begin{array}{l}
\iota \text { if } \pi \in A_{n} \\
\tau \text { if } \pi \notin A_{n}
\end{array}\right.
$$

We can check this: clearly $\{\iota, \tau\}$ is an abelian group, and $\psi_{\tau}(\tau)=\iota$, thus ψ_{τ} has no fixed points.

Symmetric Group

Let $\psi_{1}, \psi_{2} \in \operatorname{FPF}\left(S_{n}\right), \psi_{1}\left(S_{n}\right)=\left\langle\tau_{1}\right\rangle$ and $\psi_{2}\left(S_{n}\right)=\left\langle\tau_{2}\right\rangle$ where $\tau_{2}=\pi \tau_{1} \pi^{-1}$ for some $\pi \in S_{n}$.

Define $\phi \in \operatorname{Aut}\left(S_{n}\right)$ to be conjugation by π. Then $\psi_{2}=\phi \psi_{1} \phi^{-1}$, thus $\mathfrak{B}\left(N^{\psi_{1}}\right) \cong \mathfrak{B}\left(N^{\psi_{2}}\right)$.

$R: S_{n} \times S_{n} \rightarrow S_{n} \times S_{n}$

Fix $\tau \in A_{n},|\tau|=2$. The solution set-theoretic solution to the Yang-Baxter equation arising from $N^{\psi_{\tau}}$ is

$$
R\left(\eta_{\pi}, \eta_{\chi}\right)=\left\{\begin{array}{l}
\left(\eta_{\tau \chi \tau}, \eta_{\chi^{-1} \tau \pi \tau \chi}\right) \text { if } \pi, \chi \notin A_{n} \\
\left(\eta_{\tau \chi \tau}, \eta_{\tau \chi}{ }^{-1 \tau \pi \tau \chi \tau}\right. \\
\left(\eta_{\chi}, \eta_{\tau \chi \chi^{-1} \pi \chi \tau}\right) \text { if } \pi \notin A_{n}, \chi \in A_{n}, \chi \notin A_{n} \\
\left(\eta_{\chi}, \eta_{\chi^{-1} \pi \chi}\right) \text { if } \pi, \chi \in A_{n}
\end{array}\right.
$$

$R: S_{n} \times S_{n} \rightarrow S_{n} \times S_{n}$

We verify that this solution works in the case where $\pi, \chi, \sigma \notin A_{n}$:

$$
\begin{aligned}
R_{12} R_{23} R_{12}(\pi, \chi, \sigma) & =R_{12} R_{23}\left(\tau \chi \tau, \chi^{-1} \tau \pi \tau \chi, \sigma\right) \\
& =R_{12}\left(\tau \chi \tau, \tau \sigma \tau, \sigma^{-1} \tau \chi^{-1} \tau \pi \tau \chi \tau \sigma\right) \\
& =\left(\sigma, \tau \sigma^{-1} \tau \chi \tau \sigma \tau, \sigma^{-1} \tau \chi^{-1} \tau \pi \tau \chi \tau \sigma\right) \\
R_{23} R_{12} R_{23}(\pi, \chi, \sigma) & =R_{23} R_{12}\left(\pi, \tau \sigma \tau, \sigma^{-1} \tau \chi \tau \sigma\right) \\
& =R_{23}\left(\sigma, \tau \sigma^{-1} \pi \sigma \tau, \sigma^{-1} \tau \chi \tau \sigma\right) \\
& =\left(\sigma, \tau \sigma^{-1} \tau \chi \tau \sigma \tau, \sigma^{-1} \tau \chi^{-1} \tau \pi \tau \chi \tau \sigma\right)
\end{aligned}
$$

Alternating Group

Let $A_{4}=\langle\sigma, v\rangle$ with $\sigma=(123), v=(124)$. We have four nontrivial fixed-point-free abelian endomorphisms on A_{4} :

1. $\psi_{1}(\sigma)=\sigma^{2}, \psi_{1}(v)=\sigma$
2. $\psi_{2}(\sigma)=v, \psi_{2}(v)=v^{2}$
3. $\psi_{3}(\sigma)=v^{2} \sigma, \psi_{3}(v)=\sigma^{2} v$
4. $\psi_{4}(\sigma)=\sigma v^{2}, \psi_{4}(v)=v \sigma^{2}$.

Alternating Group

The subgroups arising from the four nontrivial ψ 's listed above are brace equivalent.

Let $\psi_{a}(\sigma)=\alpha, \psi_{a}(v)=\alpha^{2} ; \psi_{b}(\sigma)=\beta, \psi_{b}(v)=\beta^{2}$. We have $\beta=\gamma \alpha \gamma^{-1}$ for some $\gamma \in S_{4}$.
Consider $\phi: A_{4} \rightarrow A_{4}, \phi(\pi)=\gamma \pi \gamma^{-1}$ for all $\pi \in A_{4}$. Then $\phi \psi_{a} \phi^{-1}=\psi_{b}$, so $\mathfrak{B}\left(N^{\psi_{1}}\right) \cong \mathfrak{B}\left(N^{\psi_{2}}\right)$.

Let $A_{4}=\langle\sigma, v\rangle, \psi \in \operatorname{FPF}\left(A_{4}\right), \psi(\sigma)=\alpha, \psi(v)=\alpha^{2}$.
Denote the conjugacy class of σ by $[\sigma]$, etc.
The values of $R\left(\eta_{\pi}, \eta_{\chi}\right)$ are given in the following table:

	$\chi \in[\sigma]$	$\chi \in[v]$	$\chi \in[\sigma v]$
$\pi \in[\sigma]$	$\left(\eta_{\alpha^{2} \chi \alpha}, \eta_{\chi^{2} \alpha \pi \alpha^{2} \chi}\right)$	$\left(\eta_{\alpha^{2} \chi \alpha}, \eta_{\alpha \chi^{2} \alpha \pi \alpha^{2} \chi \alpha^{2}}\right)$	$\left(\eta_{\alpha^{2} \chi \alpha}, \eta_{\alpha^{2} \chi \alpha \pi \alpha^{2} \chi \alpha}\right)$
$\pi \in[v]$	$\left(\eta_{\alpha \chi \alpha^{2}}, \eta_{\alpha^{2} \chi^{2} \alpha^{2} \pi \alpha \chi \alpha}\right)$	$\left(\eta_{\alpha \chi \alpha^{2}}, \eta_{\chi^{2} \alpha^{2} \pi \alpha \chi}\right)$	$\left(\eta_{\alpha \chi \alpha^{2}}, \eta_{\alpha \chi \alpha^{2} \pi \alpha \chi \alpha^{2}}\right)$
$\pi \in[\sigma v]$	$\left(\eta_{\chi}, \eta_{\alpha \chi^{2} \pi \chi \alpha^{2}}\right)$	$\left(\eta_{\chi}, \eta_{\alpha^{2} \chi^{2} \pi \chi \alpha}\right)$	$\left(\eta_{\chi}, \eta_{\chi \pi \chi}\right)$

Note $R\left(\eta_{\iota}, \eta_{\chi}\right)=\left(\eta_{\chi}, \eta_{\iota}\right)$ and $R\left(\eta_{\pi}, \eta_{\iota}\right)=\left(\eta_{\iota}, \eta_{\pi}\right)$.

Metacyclic Group

Let $M_{p q}=\left\langle s, t: s^{p}=s^{q}=1\right.$, $\left.t s=s^{d} t\right\rangle$ where d has order q in \mathbb{Z}_{p}^{\times}and $p \equiv 1 \bmod q$.

The fixed-point free abelian endomorphisms on $M_{p q}$ are of the form $\psi_{j, k}: M_{p q} \rightarrow M_{p q}, \psi_{j, k}(s)=1, \psi_{i, j}(t)=s^{j} t^{k}$, with $k \neq 1$, and $k=0$ only if $j=0$.

$$
\psi_{j, k}(s)=1, \psi_{i, j}(t)=s^{j} t^{k}
$$

We can show that $\mathfrak{B}\left(N^{\psi_{1, k}}\right) \cong \mathfrak{B}\left(N^{\psi_{j, k}}\right)$.
Let $\psi_{j, k} \in \operatorname{FPF}\left(M_{p q}\right), \psi_{j, k}(s)=1, \psi_{j, k}(t)=s^{j} t^{k}$.
Case 1: $j \neq 0$.
Let $\phi \in \operatorname{Aut}\left(M_{p q}\right), \phi(s)=s^{j}, \phi(t)=t$.
Then $\phi \psi_{1, k}=\psi_{j, k} \phi$.
Case 2: $j=0$.
Pick m such that

$$
\left(1+d+d^{2}+\cdots+d^{k-1}\right) m \equiv-1 \bmod p,
$$

and define $\phi \in \operatorname{Aut}(G)$ by $\phi(s)=s, \phi(t)=s^{m} t$.
Then $\phi \psi_{1, k}=\psi_{0, k} \phi$.

Dihedral Group

Let $D_{n}=\left\langle r, s: r^{n}=s^{2}=r s r s=1\right\rangle$.
Childs 2013 gives us $\operatorname{FPF}\left(D_{n}\right)$.
If n is odd, there are no nontrivial ψ 's on D_{n}.
For n even, omitting the maps that differ by an element of the center, we have

1. $\psi(r)=1, \psi(s)=1$
2. $\psi(r)=r^{i} s, \psi(s)=1, i$ even
3. $\psi(r)=r^{i} s, \psi(s)=r^{i} s, i$ odd.

Dihedral Group

All braces given by nontrivial ψ 's are isomorphic.

1. $\psi(r)=r^{i} s, \psi(s)=1, i$ even
2. $\psi(r)=r^{i} s, \psi(s)=r^{i} s, i$ odd.

Let $\psi_{1} \in \operatorname{FPF}\left(D_{2 m}\right), \psi_{1}(r)=r^{2} s, \psi_{1}(s)=1$.
Pick $\phi \in \operatorname{Aut}\left(D_{2 m}\right), \phi(r)=r, \phi(s)=r^{i-2} s$.
Then $\phi \psi_{1}=\psi \phi$ for all other ψ 's.

$$
R\left(\eta_{g}, \eta_{h}\right)=\left(\eta_{\psi\left(g^{-1}\right) h \psi(g)}, \eta_{\psi\left(h g^{-1}\right) h^{-1} \psi(g) g \psi\left(g^{-1}\right) h \psi\left(g h^{-1}\right)}\right)
$$

1. $\psi(r)=r^{i} s, \psi(s)=1, i$ even: $\operatorname{ker} \psi=\left\langle r^{2}, s\right\rangle$
2. $\psi(r)=r^{i} s, \psi(s)=r^{i} s, i$ odd: $\operatorname{ker} \psi=\left\langle r^{2}, r s\right\rangle$

Thank you!

